
Top Stories Identification From Blog to News In TREC 2010 Blog Track

Yu-Fan Lin, Jing-Hau Wang, Liang-Cheng Lai, Hung-Yu Kao
Department of Computer Science and Information Engineering

National Cheng Kung University
uf.lins@hotmail.com, westlife138@gmail.com, bens951@hotmail.com, hykao@mail.ncku.edu.tw

Abstract

In 2010 Blog Track, there are two tasks including

Faceted Blog Distillation Task and Top Stories
Identification Task. We mainly focus on the Top Stories
Identification Task. In this task, there are two issues to
solve. The first issue is ranking the important news
stories on the specified day, named Story Ranking Task.
The second issue is named News Blog Post Ranking
Task. News Blog Post Ranking Task is ranking the blog
posts that are relevant to the news story and
diversifying the topics of blog posts.

In Story Ranking Task, our team Ikm100
(NCKU_CSIE_IKMLAB) submitted three runs. In the
first run, a news story is scored by its number of
discussion posts. In the second run, our idea is that if
the news story is discussed by more people and the
supporting blog post is relatively important, the news
story would be more important. In the last run, we use
the “Relevant-Post Time-Entropy evaluation” to score
the news story.

In News Blog Post Ranking Task, we use the cosine
similarity between the news story and the blog post,
and also use importance of posts to extract the
supporting blog posts of the news query.

1. Introduction

In TREC 2010, Blog track contains two tasks:
Faceted Blog Distillation Task and Top Story
Identification Task. Our team participates in the Top
Story Identification Task. In TREC 2009, the Top
Story Identification Task was a pilot search task
addressing the problem of using blog data to identify
top news stories [2].

In TREC 2010, the Top Story Identification Task
has two stages [1]:

1. Story Ranking Task.
2. News Blog Post Ranking Task.

For the Story Ranking Task, it is different from the
previous tasks in TREC2009. This task is treated as
real-time event detection. We have the limitation of
using information in Blog’08 data. With a given query
date Q, all the information of Blog’08 we used must
have the timestamp smaller than Q or equal Q. This
limitation fit to mimic a real-time environment.
Besides, for each query date we have to submit ranking
of 100 news stories with 5 categories. The categories
are “Business”, “U.S.”, “Sport”, “SciTech” and
“World”.

For News Blog Post Ranking Task, the goal is to
identify the top 50 relevant blog posts for each given
news story with different period of time. Each ranking
of blog posts should be diverse. It means that the blog
posts should cover multiple aspects of the news stories.
For each ranking, there are three different period of
time described as follows:

1. The timestamp of blog posts should equal or

smaller than the query timestamp

2. The timestamp of blog posts should equal or

smaller than the query timestamp + 1 days

3. The timestamp of blog posts should equal or
smaller than the query timestamp + 7 days

In this paper we first describe the data

preprocessing in Section 2, then we introduce our
method for the news stories ranking and the post
ranking in Section 3 and Section 4, respectively. We
report our performance in Section 5. Finally, the
conclusion for our participation is in Section 6.

2. Data Preprocessing

The dataset in the blog track provided by TREC is

the Blogs08 collection. It has various blogs from
different blogospheres. We can extract a lot of
information from this dataset, like timestamp, post

titles, post contents, and post comments, etc. The
preprocessing is a laborious work to exactly extract the
information we need from every different blogs.

Blogs08 dataset contains feed files, permalink files,
and blog homepages, and it is crawled over a 13-month
period from early 2008 to early 2009. The crawled
results contain 1,303,520 feeds and 28,488,766
permalink documents. In our experiment, we only
focus on all feed files because they contain main
sentences of each blog post and we think it is enough
for this task. For each blog post, we extract the
corresponding information from feed files, including
title, content and so on.

In the second preprocessing step we filter out all
non-English posts and stop words and apply the
stemming process. Then we index each blog post title
and content.

In this year, the data of news story is the TRC2
newswire corpus. The TRC2 is a collection of
1,613,707 news stories from Thomson-Reuters. First,
we filter out the news which contains the error
messages like “SERVICE ALERT”. Second, we
remove the news stories in the document, “topNews-
blacklist.docnos.txt.gz”. Then we create a separated
index for each news story.

3. Approach for Story Ranking Task

Our three ranking methods are all based on the
headline-post similarity network we build. We
submitted three runs with run tags Run1 (ikm100jing),
Run2 (ikm100bindog), and Run3 (ikm100ufan). In
Run1, we use the Sum of Cosine Similarity Approach.
In Run2, we use the Average TF-IDF Approach. And
in Run3, we use the Relevant-Post Time-Entropy
Evaluation Approach. After ranking by our approaches,
we do duplicated detection and block list for each run
tag, and then get a set of ranking results as shown in
Figure 1. The first set of ranking results, NReR, will be
re-rank into a new set of ranking results as named ReR.
Finally, NReR and ReR should be fitted to format of
the output in the last step.

Figure 1 : Flow chart of NReR and ReR

3.1 Headline-Post Network

For each news corpus in TRC2, first, we build the

weight of each word by TF-IDF (Term Frequency-
Inverse Document Frequency) technique. There are
two types of TF-IDF of a word in our methods. One is
to use the information of headlines to build the weight
of each word and is called TF-IDFh. Another is to use
the information of contents and is called TF-IDFc.

Furthermore, we consider that the information of
headlines is more important than the contents. Thus,
we give each word a new value of TF-IDF weight as
shown in the following equation:

TF- IDFnew = 2 ∗ TF- IDFh + TF- IDFc

We also do the same TF-IDF calculating for the posts
in Blogs08.

Second, for each “query date”, we calculate pair-
wise cosine similarity between each news story and
each blog post. For each query, the constructed
network contains more than 100 million headline-post
links. In order to filter out noises information in them,
we only store the headline-post links which the
similarity value is larger than 0.1.

3.1.1 Run1: Sum of Cosine Similarity Approach

Score(h) = � sim(h, p)
p∈T

The score of each news story h is assigned as the

sum of the cosine-similarity between news story h and
post p that is posted during the timestamp T. In this run,
we only consider the post whose cosine-similarity is
larger than 0.3. The timestamp T is between the
headline day d and d-1.

Figure 2 : Example for approach in Run1

For example, there are a news story h and three

posts p1, p2 and p3. In Figure 2, the value of sim(h, p1)
is 0.8 , sim(h, p2) is 0.5 , and sim(h, p3) is 0.4 . Then
the news story gets the Score(h) that value is 1.7 .

3.1.2 Run2: Average TF-IDF Approach

The main idea in this run is that the news story is
more important if it is discussed by more people, and a
more important post has more important words. Here,
we only use the posts on the query day T and only
consider the post whose cosine-similarity is larger than
0.35. In next step, we calculate the average TF-IDF
(post_avg_tfidf) for each blog post. The score is
defined as:

Score(h) = � post_avg_t�idf(p)

p∈T

∗ sim(h, p)

Figure 3 : Example for approach in Run2

Consider the example in Figure 3. The news story h

has two associated posts p1 and p2. The value of sim(h,
p1) is 0.8 and sim(h, p2) is 0.5. The post p1 contains
Word1 and Word2. The post p2 contains Word3,
Word4 and Word5. The score of h is then calculated as
follows:

Score(h) = �2+3

2
� ∗ (0.8) + �2+1+3

3
� ∗ (0.5)

3.1.3 Run3: Relevant-Post Time-Entropy
Evaluation Approach

In Run3, we propose a method that collects and
analyzes the entropy value of the posts, called
“Relevant-Post Time-Entropy Evaluation”. For a query
date T, we use all the posts in the range from T-5 to T.
In this run, we also consider the post whose cosine-
similarity is larger than 0.35 to cut off the irrelevant
posts.

In Figure 4, after extracting the publish time from
dataset, the relevant posts are shown according to their
published day on the time line. It means for the news
story we can selected a set of relevant posts, and
separate each posts by published day on the time line.
We assume that before the hot story happened, this
story may get higher attention and some bloggers
would start to discuss the hot story in their posts. We
call this case the posting-bursty behavior, as the
example at 8/09 in Figure 4. We used the entropy value
E to model the behavior as follows.

Figure 4 : Example of Relevant-Post Time-Entropy

Evaluation

E = − � qi ∗ log(qi)
T

i=T−5

‘E’ means the entropy value of relevant posts. ‘qi’

means the probability of relevant posts appearing in
date i. Each news story h has a score with the ratio
between the entropy value and the bursty distance D,
defined as

Score(h) =
(1 − E)

D
,

where ‘D’ means the distance between the bursty date
and the news date. Consider the example in Figure 4.
Each black dot is a post. We find all the relevant posts
with the news story which the date was from 8/06 to
8/11, and we find a bursty date 8/09. Then we get a
distance D=2 between bursty date and news date in this
example.

Then we calculate ‘E’ as follows:

E = −�0 + �28� ∗ �log 2

8� + �48� ∗ �log 4
8� + �18� ∗

�log 1
8� + �18� ∗ �log 1

8� + 0�=0.53,

and the score of h is calculated as follows:

Score(h) =
1 − 0.53

2

3.2 Duplicated Detection and Block List

In the TRC2 corpus, we found that there are many
duplicated news in one subject. That is, if a news
article is partially updated, it becomes a new version of
the original news. Our goal is to detect the duplicated
news after any revision. Our approach is described as
follows:

1. We calculate the pair-wise similarity for each

news story in query’s ranking results.

2. For each news story h we extract the news
story h’ which has the higher similarity larger
than 0.9.

3. For each h we have a news story group that
contains h and h’. Then we save the latest
news from the news story group and add the
other news stories into the block list B.

Repeating the third step, we have the block list B

for all news stories. Finally, we remove the news
stories in the block list B for each query’s news story
ranking results.

Then we got a set of three ranking results of news
stories with different runs: Run1, Run2, Run3, and we
call this set of ranking results as Non Re-ranking
Results (NReR). NReR will be re-ranked by the
effective terms described in Section 3.3, and we will
have a new set of ranking results, called Re-ranking
Results (ReR).

3.3 Effective Terms Re-ranking

In this section, we are curious about whether some

effective terms in the past hot news will have a positive
influence for news stories ranking in the future or not.
We build monthly effective terms list Mi for some
month ID i, where i is the integer from 1 to 13. For
example, M3 present the effective terms list for March,
2008 and M13 specially presents for January, 2009.

First, we do not consider the news stories which do
not have any word that has its IDF value larger than
1.5. We then select top 40 news stories in each run of
NReR for each query.

Second, in order to build Mi, we select effective
terms from the top 40 news stories of the queries in its
previous month. For instance, the effective terms in M5
is selected from the top 40 news stories from the
queries in April, 2008. The queries in April from the
dataset are 2008-4-2, 2008-4-19 and 2008-4-23.
Besides, in order to build M1, we add two queries of
2008-1-1 and 2008-1-2. We then choose effective
terms from extracted news. Each term is selected when
we thought it can be an important term in news stories.
Each member is assigned 57 news of each month in
average.

Third, for each query in i-th month, the news stories
will be rescoring by the equation in the following
equation.

Score′(h) = � Score(h) ∗ eTF-IDF(w,h)

w∈Mi

Score(h) means the original score of the news story
h. Score’(h) means h is enhanced by those effective
terms by the formula illustrated for each w belongs to
Mi. The TF-IDF(w, h) means the TF-IDF value of the

term w in the TRC2 news story h. If the w does not
exist in h, then the value of TF-IDF(w, h) will be zero.

After the rescoring, we can re-rank the news stories
and got a new set of re-ranking results (ReR). The re-
ranking flow chart is also shown in Figure 1.

3.4 News stories Classification

Blog task of this year is different from tasks in last
year. The difference is that we have to judge the
category of each extracted news story. For a given time
query, we have to return the top 100 news stories
ranking for each category. Unfortunately, the TRC2
dataset do not contains category information of news.
Thus, we use the tool, “Libsvm”, to build a classifier to
classify our news.

First, we crawled the news stories during the period
from 2008/04 to 2008/06 for each 5 category as
training set. There have total 1037 news stories for
each category. Then we construct the inverted index of
the training set, and we use the vector of TF-IDF
values to represent each news story. We train a model
according to the training set, and then use this model to
predict the category of each news story in TRC2
corpus.

3.5 Format of Output File for Story Ranking
Task

At the last step (D) shown in Figure 1, we have to

fit the format of output files. For each numbered
"query date", we select top 100 news stories ranking
for each 5 categories. We already have the category of
each news story from Section 3.4. Format of output file
is like the sample [1] in Figure 5.

Figure 5 : Format of output file

Finally, we have two set of final results, Standard-

NReR and Standard-ReR. Each set of final results
contains 3 runs for our different approaches.

 Standard-NReR : Runs of Run1, Run2, Run3
 Standard-ReR : Runs of Run1, Run2, Run3

Our team submitted 3 runs for Story Ranking Task.

We submitted 3 runs in Standard-ReR. And we will
have comparison of statMap between Standard-NReR
and Standard-ReR in Section 5.

4. Approach for News Blog Post Ranking
Task

In this stage, we use the cosine similarity value

between the headline and the post, and also use the
count of post’s comment to score the posts.

Score(p) = (α)�sim(h, p)� + (1 − α)(Norm_Comment)

sim(h, p) means the value of cosine similarity

between the news story h and the blog’s post p.
“Norm_Comment” means the normalized value of
count of post’s comment. Term α means the weight of
the cosine similarity comparing with count of post’s
comment.

For each news story of query, we selected relevant
posts with their cosine similarity larger than 0.35.

Before we score and rank the relevant post. We
classify posts to 5 categories (“Business”, “U.S.”,
“Sport”, “SciTech” and “World”). After post ranking,
we select the post which only has the same category
with the news story to submit our results. For example,
if the query of the news story belongs to business
category, then we only rank those posts which belong
to the business category. We submitted 3 runs with
three different α in this stage. We set α = 0.25, 0.5,
and 0.75 for each run respectively.

5. Results of Runs

Our team IKM100 submitted 3 runs named Run1
(ikm100jing), Run2 (ikm100bindog) and Run3
(ikm100ufan) in Stories Ranking Task. All runs are
automatically generated and ranked. The performance

Group Runs TRC2-
Fields

Mean
StatMAP

StatMAP by Category

Business Sci-Tech Sport U.S. World

POSTECH_KLE KLERUN1 HC 0.2206 0.1851 0.1821 0.1916 0.2458 0.2986

ICTNET ICTNETTSRun2 HC 0.2138 0.0969 0.1898 0.2405 0.3025 0.2396

ikm100

Run1 HC 0.2151 0.1141 0.2483 0.1725 0.3897 0.1504

Run2 HC 0.2107 0.1146 0.2390 0.1451 0.3870 0.1715

Run3 HC 0.2043 0.0823 0.2425 0.1699 0.3827 0.1441

Runs Alpha-nDCG@10 P-IA@10 nERR-IA@10

Run1,α = 0.25 0.3335 0.1049 0.2907

Run2,α = 0.5 0.3750 0.1211 0.3332

Run3,α = 0.75 0.4075 0.1309 0.3720

Runs Mean

StatMAP
StatMAP of each category

Business Sci-Tech Sport U.S. World
Standard-NReR Run1 0.2339 0.1200 0.2809 0.1716 0.4662 0.1307

Run2 0.2243 0.1191 0.2725 0.1364 0.4393 0.1543

Run3 0.2139 0.0874 0.2732 0.1704 0.4192 0.1201
Standard-ReR Run1 0.2151 0.1141 0.2483 0.1725 0.3897 0.1504

Run2 0.2107 0.1146 0.2390 0.1451 0.3870 0.1715

Run3 0.2043 0.0823 0.2425 0.1699 0.3827 0.1441

Table 1 : Performance of submitted runs for Story Ranking Task

Table 2 : Performance of submitted runs for News Blog Post Ranking

Table 3 : The comparison of statMAP between Standard-NReR and Standard-ReR for Story Ranking Task

of our runs and runs of other participants in Story
Ranking Task is shown in Table 1.

In News Blog Post Ranking Task, our team
submitted 3 runs named ‘Run1’, ’Run2’ and ‘Run3’
with different α values shown in Table 2. We select
the evaluation of alpha-nDCG@10, P-IA@10 and
nERR-IA@10 to show our performance as shown in
Table 2.

TREC organizers have provided test programs of
evaluation on TREC website. We have download the
program files of blog story ranking task and implement
the evaluation process on Ubuntu OS. We also
implement some extra evaluation. The comparison of
statMAP between Standard-NReR and Standard-ReR
is shown in Table 3.

6. Conclusions

In TREC 2010, we focus on the Story Ranking of
the Top Story Identification Task. We propose three
general methods based on the headline-post network.
In this network, we identify each cosine similarity
between post and news story. For the category
classification, our team crawl the news from Reuters
website and use the “Libsvm” to classify news stories
in TRC2 dataset. Additionally, we found something
interesting that the effective term list we retrieved is
not as useful as we expected. The performance of
Standard-NReR outperformed Standard-ReR according
to statMAP. This means that the influence of term list
will shift with time and a better approach should be
developed to find the useful effective terms.

In the News Blog Post Ranking, our method does
not use diversity features to rank the posts. We use the
blogger’s attention feature, i.e. the number of post’s
comments. This feature helps us to identify popular
post for the news story. We also use cosine similarity
to judge the relevance between post and news story.

In the future work, we focus on exploring links
between blogs and applying other suitable models to
the Top Story Identification Task. The work will try to
quantify blogger’s attention to the top stories and see
how we can use more characteristics of the
blogosphere.

7. Acknowledgement

We would like to appreciate the TRC2 newswire

corpus from Thomson-Reuters, and the technological
guidance of using evaluation program from the
organizers in blog track.

8. References

1. http://ir.dcs.gla.ac.uk/wiki/TREC-BLOG.
2010.

2. Macdonald, C., et al., Blog track research at
TREC. SIGIR Forum, 2010. 44(1): p. 58-75.

http://ir.dcs.gla.ac.uk/wiki/TREC-BLOG�

	1. Introduction
	2. Data Preprocessing
	3. Approach for Story Ranking Task
	3.1 Headline-Post Network
	3.1.1 Run1: Sum of Cosine Similarity Approach
	3.1.2 Run2: Average TF-IDF Approach
	3.1.3 Run3: Relevant-Post Time-Entropy Evaluation Approach

	3.2 Duplicated Detection and Block List
	3.3 Effective Terms Re-ranking
	3.4 News stories Classification
	3.5 Format of Output File for Story Ranking Task

	4. Approach for News Blog Post Ranking Task
	5. Results of Runs
	6. Conclusions
	7. Acknowledgement
	8. References

